Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029902

RESUMO

The objective of this study was to immobilize a recombinant ß-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for ß-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization. The inhibitory effect of galactose decreased in the enzyme reactions catalyzed by CS@Gal, and Mg2+ increased the immobilized enzyme activity by 40 % in the magnetic CS cellulose system. The relative enzyme activity of the CS@Gal was 20 % higher than that of the soluble enzyme activity after 20 min at 50 °C. The CS support and CS@Gal capsules exhibited an average size of 8 ± 1 mm, with the structure of the shell (alginate-pectin-cellulose) enveloping and isolating the magnetic core. The immobilized ß-galactosidase-CBD within the magnetic CS cellulose system retained ∼80 % of its capacity to hydrolyze lactose from skim milk after 10 reuse cycles. This study unveils a novel and promising support for the oriented immobilization of recombinant ß-galactosidase using a magnetic CS system and a CBD tag. This support facilitates ß-galactosidase reuse and efficient separation, consequently enhancing the catalytic properties of the enzyme.


Assuntos
Celulose , Enzimas Imobilizadas , Celulose/química , Enzimas Imobilizadas/química , Catálise , beta-Galactosidase/química , Fenômenos Magnéticos
2.
Bioprocess Biosyst Eng ; 47(2): 263-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38156992

RESUMO

The objective of this study was to develop a bioprocess for lactose hydrolysis in diverse dairy matrices, specifically skim milk and cheese whey, utilizing column reactors employing a core-shell enzymatic system featuring ß-galactosidase fused to a Cellulose Binding Domain (CBD) tag (ß-galactosidase-CBD). The effectiveness of reactor configurations, including ball columns and toothed columns operating in packed and fluidized-bed modes, was evaluated for catalyzing lactose hydrolysis in both skim milk and cheese whey. In a closed system, these reactors achieved lactose hydrolysis rates of approximately 50% within 5 h under all evaluated conditions. Considering the scale of the bioprocess, the developed enzymatic system was capable of continuously hydrolyzing 9.6 L of skim milk while maintaining relative hydrolysis levels of approximately 50%. The biocatalyst, created by immobilizing ß-galactosidase-CBD on magnetic core-shell capsules, exhibited exceptional operational stability, and the proposed bioprocess employing these column reactors showcases the potential for scalability.


Assuntos
Lactose , Leite , Animais , Lactose/química , Hidrólise , Leite/química , Leite/metabolismo , beta-Galactosidase/química , Fenômenos Magnéticos , Enzimas Imobilizadas/metabolismo
3.
3 Biotech ; 13(6): 186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193330

RESUMO

The present study reviewed and discussed the promising affinity tags for one-step purification and immobilization of recombinant proteins. The approach used to structure this systematic review was The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) methodology. The Scopus and Web of Science databases were used to perform the bibliographic survey by which 267 articles were selected. After the inclusion/exclusion criteria and the screening process, from 25 chosen documents, we identified 7 types of tags used in the last 10 years, carbohydrate-binding module tag (CBM), polyhistidine (His-tag), elastin-like polypeptides (ELPs), silaffin-3-derived pentalysine cluster (Sil3k tag), N-acetylmuramidase (AcmA tag), modified haloalkane dehalogenase (HaloTag®), and aldehyde from a lipase polypeptide (Aldehyde tag). The most used bacterial host for expressing the targeted protein was Escherichia coli and the most used expression vector was pET-28a. The results demonstrated two main immobilization and purification methods: the use of supports and the use of self-aggregating tags without the need of support, depending on the tag used. Besides, the chosen terminal for cloning the tag proved to be very important once it could alter enzyme activity. In conclusion, the best tag for protein one-step purification and immobilization was CBM tag, due to the eco-friendly supports that can be provided from industry wastes, the fast immobilization with high specificity, and the reduced cost of the process.

4.
Int J Biol Macromol ; 199: 307-317, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35007635

RESUMO

This study aimed to develop single-step purification and immobilization processes on cellulosic supports of ß-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/gsupport, expressed activity values reached 106.88 (microcrystalline cellulose), 115.03 (alkaline nanocellulose), and 108.47 IU/g (acid nanocellulose). The derivatives produced were less sensitive to the presence of galactose in comparison with the soluble purified enzyme. Among the cations assessed (Na+, K+, Mg2+, and Ca2+), magnesium provided the highest increase in the enzymatic activity of ß-galactosidases immobilized on cellulosic supports. Supports and derivatives showed no cytotoxic effect on the investigated cell cultures (HepG2 and Vero). Derivatives showed high operational stability in the hydrolysis of milk lactose and retained from 53 to 64% of their hydrolysis capacity after 40 reuse cycles. This study obtained biocatalyzers with promising characteristics for application in the food industry. Biocatalyzers were obtained through a low-cost one-step sustainable bioprocess of purification and immobilization of a ß-galactosidase on cellulose via CBD.


Assuntos
Enzimas Imobilizadas , Lactose , Celulose , Estabilidade Enzimática , Enzimas Imobilizadas/química , Hidrólise , Lactose/química , beta-Galactosidase/química
5.
Bioresour Technol ; 345: 126497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883192

RESUMO

For the first time, this work reported the one-step purification and targeted immobilization process of a ß-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after ß-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between ß-galactosidase and the substrate 1.2 × higher in the lactose hydrolysis of milk. ß-Galactosidase-CBD's oriented immobilization process on supports increased the thermal stability of the immobilized enzyme by up to 7 × . After 15 cycles of reuse, both enzyme preparations showed a relative hydrolysis percentage of 50% of lactose in milk. The oriented immobilization process developed for purifying recombinant proteins containing the CBD tag enabled the execution of both steps simultaneously and quickly and the obtention of ß-galactosidases with promising catalytic characteristics for application in the food and pharmaceutical industries.


Assuntos
Celulose , Lactose , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hidrólise , Fenômenos Magnéticos , beta-Galactosidase/metabolismo
6.
Int J Biol Macromol ; 184: 159-169, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126150

RESUMO

The aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (Fe3O4-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using ß-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed. The load of 600 Uenzyme/gsupport showed the highest recovered activity value (~50%). After the immobilization process, the recombinant ß-galactosidase (HisGal) showed increased substrate affinity and greater thermal stability (~50×) compared to the free enzyme. The immobilized ß-galactosidase was employed in batch processes for lactose hydrolysis of skim milk and cheese whey, resulting in hydrolysis rates higher than 50% after 15 cycles of reuse. The support used was obtained in the present study without modifying chemical agents. The support easily recovered from the reaction medium due to its magnetic characteristics. The iron nanoparticles functionalized with histidine and nickel were efficient in the oriented immobilization of the recombinant ß-galactosidase, showing its potential application in other high-molecular-weight enzymes.


Assuntos
Histidina/química , Lactose/química , Níquel/química , beta-Galactosidase/metabolismo , Queijo/análise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nanopartículas de Magnetita , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Soro do Leite/química , beta-Galactosidase/química
7.
Bioresour Technol ; 326: 124747, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517047

RESUMO

This study aimed to produce and characterize a recombinant Kluyveromyces sp. ß-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl ß-d-1-thiogalactopyranoside (IPTG) 0.5 mM (108.77 U/mL) or lactose 5 g/L (93.10 U/mL) as inducers. Cultures at bioreactor scale indicated that higher product yield values in relation to biomass (2000 U/g) and productivity (0.72 U/mL.h) were obtained in culture media containing higher protein concentration. The recombinant enzyme showed high binding affinity to nanocellulose, reaching both immobilization yield and efficiency values of approximately 70% at pH 7.0 after 10 min reaction. The results of the present study pointed out a strategy for recombinant ß-galactosidase-CBD production and immobilization, aiming toward the application in sustainable industrial processes using low-cost inputs.


Assuntos
Reatores Biológicos , Escherichia coli , Celulose , Escherichia coli/genética , Lactose , beta-Galactosidase/genética
8.
Biotechnol Lett ; 43(3): 589-599, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33052483

RESUMO

OBJECTIVE: The aim of the present study was to evaluate the efficiency of lactose derived from cheese whey and cheese whey permeate as inducer of recombinant Kluyveromyces sp. ß-galactosidase enzyme produced in Escherichia coli. Two E. coli strains, BL21(DE3) and Rosetta (DE3), were used in order to produce the recombinant enzyme. Samples were evaluated for enzyme activity, total protein content, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis after induction with isopropyl-ß-D-1-thiogalactoside (IPTG) (0.05 and 1 mM) and lactose, cheese whey, and cheese whey permeate solutions (1, 10, and 20 g/L lactose) at shake-flask cultivation, and whey permeate solution (10 g/L lactose) at bioreactor scale. RESULTS: The highest specific activities obtained with IPTG as inducer (0.05 mM) after 9 h of induction, were 23 and 33 U/mgprotein with BL21(DE3) and Rosetta(DE3) strains, respectively. Inductions performed with lactose and cheese whey permeate (10 and 20 g/L lactose) showed the highest specific activities at the evaluated hours, exhibiting better results than those obtained with IPTG. Specific activity of recombinant ß-galactosidase using whey permeate (10 g/L lactose) showed values of approximately 46 U/mgprotein after 24-h induction at shake-flask study, and approximately 26 U/mgprotein after 16-h induction at bench bioreactor. CONCLUSIONS: The induction with cheese whey permeate was more efficient for recombinant ß-galactosidase expression than the other inducers tested, and thus, represents an alternative form to reduce costs in recombinant protein production.


Assuntos
Proteínas Fúngicas , Lactose , Proteínas Recombinantes , Soro do Leite/química , beta-Galactosidase , Reatores Biológicos/microbiologia , Queijo , Meios de Cultura/química , Meios de Cultura/farmacologia , Indústria de Laticínios , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/genética , Lactose/química , Lactose/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
9.
Carbohydr Polym ; 246: 116646, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747279

RESUMO

Enzymes are proteins specialized in catalyzing biological reactions. However, factors such as cost and operational limitations could limit their applications in the industrial sector. An alternative to these limiting factors is enzyme immobilization, which enables reuse and increases biocatalyst stability. Cellulose can be employed in enzyme immobilization, and is an outstanding alternative due to availability and cost. Additionally, this material might undergo several chemical treatments, thus obtaining cellulose nanocrystals and nanofibers. The use of nanomaterials at an industrial scale requires more refined unit operations to separate them, a setback that can be solved by combining these materials to magnetic nanoparticles. This review shows important aspects for the synthesis and application of nanocellulose and magnetic nanoparticles. It also reports new trends and strategies to associate these materials. Magnetic cellulose is a versatile support for enzyme immobilization, so much so that different immobilization methods might be conducted using this material.


Assuntos
Proteínas de Bactérias/química , Celulose/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Nanopartículas de Magnetita/química , Nanotecnologia/métodos , Biocatálise , Emulsões , Estabilidade Enzimática , Humanos , Micro-Ondas , Sonicação
10.
Biotechnol Prog ; 36(4): e2982, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083812

RESUMO

Hydrolysis efficiency of ß-galactosidases is affected due to a strong inhibition by galactose, hampering the complete lactose hydrolysis. One alternative to reduce this inhibition is to perform mutations in the enzyme's active site. The aim of this study was to evaluate the effect of point mutations on the active site of different microbial ß-galactosidases, using computational techniques. The enzymes of Aspergillus niger (AnßGal), Aspergillus oryzae (AoßGal), Bacillus circulans (BcßGal), Bifidobacterium bifidum (BbßGal), and Kluyveromyces lactis (KlßGal) were used. The mutations were carried out in all residues that were up to 4.5 Å from the galactose/lactose molecules and binding energy was computed. The mutants Tyr96Ala (AnßGal), Asn140Ala and Asn199Ala (AoßGal), Arg111Ala and Glu355Ala (BcßGal), Arg122Ala and Phe358Ala (BbßGal), Tyr523Ala, Phe620Ala, and Trp582Ala (KlßGal) had the best results, with higher effect on galactose binding energy and lower effect on lactose affinity. To maximize enzyme reactions by reducing galactose affinity, double mutations were proposed for BcßGal, BbßGal, and KlßGal. The double mutations in BcßGal and BbßGal caused the highest reduction in galactose affinity, while no satisfactory results were observed to KlßGal. Using computational tools, mutants that reduced galactose affinity without significantly affecting lactose binding were proposed. The mutations proposed can be used to reduce the negative feedback process, improving the catalytic characteristics of ß-galactosidases and rendering them promising for industrial applications.


Assuntos
Galactose/química , Lactose/química , beta-Galactosidase/genética , Aspergillus niger/enzimologia , Aspergillus oryzae/enzimologia , Bacillus/enzimologia , Bifidobacterium bifidum/enzimologia , Catálise , Hidrólise , Cinética , Kluyveromyces/enzimologia , Mutação Puntual/genética , beta-Galactosidase/química , beta-Galactosidase/ultraestrutura
11.
Biomacromolecules ; 20(6): 2315-2326, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083979

RESUMO

We describe a process for obtaining nanocrystalline cellulose (NC) by either acidic (H-NC) or alkaline treatment (OH-NC) of microcrystalline cellulose, which was subsequently bonded to magnetic nanoparticles (H-NC-MNP and OH-NC-MNP) and used as support for the immobilization of Aspergillus oryzae (H-NC-MNP-Ao and OH-NC-MNP-Ao) and Kluyveromyces lactis (H-NC-MNP-Kl and OH-NC-MNP-Kl) ß-galactosidases. The mean size of magnetic nanocellulose particles was approximately 75 nm. All derivatives reached saturation magnetizations of 7-18 emu/g, with a coercivity of approximately 4 kOe. Derivatives could be applied in batch hydrolysis of lactose either in permeate or in cheese whey for 30× and it reached hydrolysis higher than 50%. Furthermore, using a continuous process in a column packed-bed reactor, the derivative OH-NC-MNP-Ao had capacity to hydrolyze over 50% of the lactose present in milk or whey after 24 h of reaction. Fungal ß-galactosidases immobilized on magnetic nanocellulose can be applied in lactose hydrolysis using batch or continuous processes.


Assuntos
Celulose/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Kluyveromyces/enzimologia , Campos Magnéticos , beta-Galactosidase/química
12.
Biotechnol Prog ; 34(4): 934-943, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29717554

RESUMO

We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead-Glu) or carboxyl groups through acid solution (Immobead-Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae ß-galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead-Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10-500 mg g-1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g-1 support. Gal immobilized on Immobead-Glu and Immobead-Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half-lifes than the soluble enzyme, where the half-lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934-943, 2018.


Assuntos
Aspergillus oryzae/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , beta-Galactosidase/química , beta-Galactosidase/metabolismo
13.
Int J Biol Macromol ; 109: 303-310, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258896

RESUMO

This work is the first study of the immobilization of Aspergillus oryzae ß-galactosidase (Gal) on powdered collagen (Col) that had formed a chelate with aluminum (Col-Al-Gal). Other collagen treatments, including those with acetic acid, glutaraldehyde, and a combination of aluminum and glutaraldehyde (Col-Al-Glu-Gal), were also tested. High-yield (superior to 80%) and high-efficiency (superior to 99%) immobilization was obtained for the derivatives Col-Al-Gal and Col-Al-Glu-Gal, even at high protein loads (500-1,000 mg g-1 of support). The storage stability of Gal immobilized on Col-Al and Col-Al-Glu resulted in Gal retaining approximately 60% of its initial activity after 90 days at 4 °C. The half-life values of derivatives Col-Al-Gal and Col-Al-Glu-Gal were higher than those of soluble enzyme at 65, 68, 70, and 73 °C. The derivatives Col-Al-Gal and Col-Al-Glu-Gal retained high enzyme activity in batch hydrolysis of lactose in permeate and lactose solutions for 50 and 60 cycles, respectively. Our results suggest that powdered collagen treated with aluminum, a low-cost support, is a promising support for the immobilization of ß-galactosidase.


Assuntos
Aspergillus oryzae/enzimologia , Colágeno/química , Colágeno/metabolismo , Enzimas Imobilizadas , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Catálise , Quelantes , Hidrólise , Cinética , Lactose/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Ciênc. rural ; 46(5): 921-926, May 2016. tab
Artigo em Inglês | LILACS | ID: lil-777289

RESUMO

ABSTRACT: One of the greatest challenges for dairy industries is the correct destination of all the whey generated during cheese making, considering its high impact, the large volume created, and its technological potential. Enzymatic hydrolysis of cheese whey lactose is a biotechnological alternative. However, one of the limiting factors of its use is the relatively high cost of the enzymes, which could be lowered with the immobilization of these biocatalysts. Considering this context, the objective of this research was to evaluate the commercial Kluyveromyces lactis β-galactosidase enzyme immobilized in calcium alginate spheres and gelatin, using glutaraldehyde and concanavalin A (ConA) as modifying agents in the hydrolysis of cheese whey lactose process. Results have shown that the enzyme encapsulation complexed with ConA in alginate-gelatin spheres, without glutaraldehyde in the immobilization support, has significantly increased the hydrolysis of lactose rate, achieving a maximum conversion of 72%.


RESUMO: Um dos grandes desafios das indústrias de laticínios é destinar de forma correta todo o soro gerado durante a produção de queijo, devido ao seu impacto ambiental, grande volume gerado e potencial tecnológico. A hidrólise enzimática da lactose presente no soro de queijo é uma alternativa biotecnológica. Contudo, um dos fatores limitantes de sua utilização é o custo relativamente alto das enzimas, o que poderia ser minimizado com a imobilização destes biocatalisadores. Baseado nesse contexto, o objetivo do presente trabalho foi avaliar a enzima comercial β-galactosidase de Kluyveromyces lactis, imobilizada em esferas de alginato de cálcio e gelatina, empregando o glutaraldeído e a concanavalina A (ConA) como agentes modificadores, no processo de hidrólise da lactose presente no soro de queijo. Os resultados obtidos demonstraram que o encapsulamento da enzima complexada com ConA em esferas de alginato-gelatina, sem a presença de glutaraldeído no meio de imobilização, aumentou de modo significativo o teor de hidrólise da lactose, obtendo conversão máxima de 72%.

15.
Enzyme Res ; 2015: 806240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587283

RESUMO

This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial ß-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) ß-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis ß-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis ß-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of ß-galactosidases in the food industry.

16.
Biotechnol Prog ; 27(3): 717-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21509953

RESUMO

Staphylococcus warneri strain EX17 produces three lipases with different molecular weights of 28, 30, and 45 kDa. The 45 kDa fraction (SWL-45) has been purified from crude protein extracts by one chromatographic step based on the selective adsorption of this lipase by interfacial activation on different hydrophobic supports at low ionic strength. The adsorption of SWL-45 on octyl-Sepharose increased the enzyme activity by 60%, but the other lipases were also adsorbed on this support. Using butyl-Toyopearl, which is a lesser hydrophobic support, the purification factor was close to 20, and the only protein band detected on the sodium dodecyl sulfate-polyacrylamide electrophoresis analysis gel was that corresponding to the SWL-45, which could be easily desorbed from the support by incubation with triton X-100, producing a purified enzyme. SWL-45 was immobilized under very mild conditions on cyanogen bromide Sepharose, showing similar activities and stability as for its soluble form but without intermolecular interaction. The effects of different detergents over the activity of the immobilized SWL-45 were analyzed, which was hyperactivated by factors of 1.3 and 2.5 with 0.01% Tween 80 and 0.1% Triton X-100, respectively, while ionic detergents produced detrimental effects on the enzyme activity even at very low concentrations. Optimal reaction conditions and the effect of other additives on the enzyme activity were also investigated.


Assuntos
Cromatografia/métodos , Enzimas Imobilizadas/isolamento & purificação , Lipase/isolamento & purificação , Staphylococcus/enzimologia , Adsorção , Detergentes/química , Interações Hidrofóbicas e Hidrofílicas , Lipase/química , Lipase/metabolismo
17.
J Ind Microbiol Biotechnol ; 38(9): 1599-604, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21340482

RESUMO

In this research, the combined effects of polydimethylsiloxane (PDMS) and different conditions of oxygen volumetric mass transfer coefficient (k(L)a) on lipase production by Staphylococcus warneri EX17 were studied and optimized in bioreactor cultures. Raw glycerol from biodiesel synthesis was used as the sole carbon source. Full-factorial central composite design and the response surface methodology were employed for the experimental design and analysis of the results. The optimal polydimethylsiloxane concentration and mass coefficient transfer (k(L)a) were found to be 13.5% (v/v) and 181 h(-1), respectively. Under these conditions, the maximal cell production obtained was 10.0 g/l, and the volumetric lipase activities of approximately 490 U/l, after 6 h of cultivation. These results are in close agreement with the model predictions. Results obtained in this work reveal the positive effects of PDMS on oxygen volumetric mass transfer coefficient (k(L)a) in the Staphylococcus warneri EX17 cultivation and lipase production.


Assuntos
Dimetilpolisiloxanos/química , Lipase/biossíntese , Oxigênio , Staphylococcus/enzimologia , Reatores Biológicos , Meios de Cultura , Glicerol/metabolismo
18.
J Chromatogr A ; 1217(4): 473-8, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19954784

RESUMO

Three different lipases from the extract crude of Staphylococcus warneri have been purified by specific lipase-lipase interactions using different lipases (TLL, RML, PFL, BTL2) covalently attached to a solid support as adsorption matrix. BTL2 immobilized on glyoxyl-DTT adsorbed selectivity only a 30 kDa lipase from the crude, which was desorbed by adding 0.1% triton X-100. Using glyoxyl-PFL as matrix, two new lipases (28 and 40 kDa) were adsorbed, and completely pure 40 kDa lipase was obtained after desorption using 0.01% triton, whereas 28 kDa lipase was desorbed after the incubation of the lipase matrix with 3% detergent. When using other matrixes as glyoxyl-TLL or glyoxyl-RML, different lipases were adsorbed. This methodology could be a very efficient and useful method to purify several lipases from crude extracts from different sources.


Assuntos
Lipase/isolamento & purificação , Staphylococcus/enzimologia , Adsorção , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glioxilatos/química , Lipase/química , Lipase/metabolismo , Modelos Moleculares , Ligação Proteica , Sefarose/química
19.
J Biotechnol ; 144(2): 113-9, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19737586

RESUMO

Immobilized-stabilized aminated lipase from Thermomyces lanuginosus (TLL-A) is not easily reactivated after inactivation by incubation in the presence of organic solvents or chaotropic reagents. To improve the recovered activity of this biocatalyst, immobilized TLL-A has been submitted to different modifications. The best results were obtained when the enzyme was coated with a very hydrophilic and inert polymer: dextran modified with glycine (Dx-Gly). This modification did not reduce enzymatic activity while it increased the stability of this already very stable preparation, in thermal and organic solvent induced inactivation (by a 4-fold factor). Simple incubation in aqueous medium at pH 7 and 25 degrees C permitted to fully recover the activity of the immobilized and modified TLL-A enzyme inactivated by incubation in organic solvents or saturated guanidine during 3 cycles, while the non-modified enzyme only recover some activity. When the inactivation was caused by exposition at high temperatures, the reactivation was higher using the modified biocatalyst, but was far for complete (40% after 3 inactivation-reactivation cycles). The determination of the TLL-A activity in the presence of detergents (that helps the opening of active site of the lipase) allowed, in this case, to significantly improve the results, now near to 90% of the initial activity was recovered (using the non-modified enzyme the recovered activity was around 60%). This very hydrophilic and inert polymer, coating the enzyme surface, seems to help the correct positioning of the hydrophilic and hydrophobic groups of the enzyme, and that way improve both the stability and possibility of reactivation of the enzyme.


Assuntos
Ascomicetos/enzimologia , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Polímeros/farmacologia , Aminas/metabolismo , Colorimetria , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Glioxilatos/metabolismo , Guanidina/farmacologia , Temperatura Alta , Sefarose/metabolismo , Solventes/farmacologia , Fatores de Tempo , Titulometria
20.
Appl Biochem Biotechnol ; 152(3): 394-404, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18548204

RESUMO

In this work, we describe the optimization of the ethanolysis of soybean oil by the enzyme Lipozyme TL-IM in the lipase-catalyzed biodiesel synthesis and the improvement of the enzyme stability over repeated batches. The studied process variables were: reaction temperature, substrate molar ratio, enzyme content, and volume of added water. Fractional factorial design was used to analyze the variables so as to select those with higher influence on the reaction and then perform a central composite design to find the optimal reaction conditions. The optimal conditions found were: temperature, 26 degrees C; substrate molar ratio, 7.5:1 (ethanol/oil); enzyme content, 25% in relation to oil weight; and added water, 4% in relation to oil weight. Under these conditions, the yield conversion obtained was 69% in 12 h. The enzyme stability assessment in repeated batches was carried out by washing the immobilized enzyme with different solvents (n-hexane, water, ethanol, and propanol) after each batch. In the treatment with n-hexane, around 80% of the enzyme activity still remains after seven cycles of synthesis, suggesting its economical application on biodiesel production.


Assuntos
Biocatálise , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Lipase/metabolismo , Óleo de Soja/metabolismo , Análise de Variância , Estabilidade Enzimática , Etanol , Modelos Biológicos , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...